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Traditional modelling and inference

• Observe some data yobs

• Define model with density p(y |θ) and parameters θ

• Likelihood function is L(θ) = p(yobs|θ)

• Use L(θ) to learn parameters

e.g. maximum likelihood or Bayesian inference by MCMC

• Inference output + model allows:

• Prediction of future behaviour

• Explanation of phenomena

• Control by understanding effect of interventions

• . . .
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Generative models

• Often hard to directly define probability models for complex

systems!

• Easier to describe how system evolves

• Can then simulate data given parameters easily

• i.e. generative model

• Likelihood calculations for generative models often very hard!

• Goal: likelihood-free inference methods

• Inference without making use of likelihood function

• One such method is ABC: approximate Bayesian computation
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Applications - population genetics

• Population genetics was first

ABC application (late 90s)

• Data are genetic sequences

from a population

• Parameters include mutation

rates etc

• And also demographic

history of population

(migration, growth etc)

• Easy to simulate data from

parameters

• Likelihood not available
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Applications - infectious disease epidemiology

• Can model infectious disease

by population counts of

susceptible, infectious and

recovered

• Parameters control rates of

change between populations

• Model can be ODE, SDE,

jump process etc

• All easy to simulate from (at

least approximately)
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Applications - infectious disease epidemiology

• Can add extra structure e.g. exposed stage, immigration

• Or move from population level model to individual based

model

• Many other applications for ODEs, SDEs, jump processes,

IBMs!
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More applications
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Queueing example

• Example used throughout talk

• A single queue

• Gaps between arrivals at back are Exp(θ1)

• Service times on reaching front are U(θ2, θ3)

• Observations are times between queue departures

• Easy to simulate data

• But probability calculations for observations challenging!

• Exact MCMC is possible (Shestopaloff and Neal 2014)

• More complex queueing network models useful in applications

• Passenger flow in airport (Ebert et al 2018)

• Computing jobs in data centre (Sutton and Jordan 2011)
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Overview of talk

• Standard ABC approaches (approximate Bayesian

computation)

• DE methods (density estimation)

– including my recent work!
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Approximate Bayesian Computation



ABC idea

• General idea:

• Simulate data y from various parameter values θ

• Consider closest matches of y to yobs
• Use corresponding parameters for inference

• Can be implemented in many different ways

• Many approaches suggested in various fields over last 50 years

• ABC puts this idea into a Bayesian framework

12



Bayesian inference

• Specify prior density π(θ)

• Beliefs about parameters before data observed

• Ideal inference goal is posterior density p(θ|yobs)
• Beliefs updated to take data into account

• Posterior depends on prior and likelihood through Bayes

theorem:

p(θ|yobs) ∝ π(θ)L(θ)

i.e. posterior ∝ prior× likelihood

• Posterior is parameters conditioned on observing yobs
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Basic ABC

Input:

• Observed data yobs
• Threshold ε ≥ 0

• Distance function d(y , y ′)

Loop over i = 1, 2, . . . ,N:

1. Sample θi from prior π(θ)

2. Simulate y from model p(y |θi )
3. If d(y , yobs) ≤ ε accept θi

Output: accepted θi values

Popular variant – do N simulations then accept M with

smallest distance
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ABC target distribution

• ABC output is sample from approximate posterior

• Ideal Bayesian inference: sample from prior + model

and condition on exact match to yobs

• ABC: sample from prior + model

and condition on approximate match to yobs

• Reducing ε gives closer matches

• more accurate output

• but acceptances rarer

• ε controls trade-off between accuracy and cost
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Example - queueing model

• Data: 20 inter-departure times
• Uniform priors for:

• Service rate θ1 on [0, 1/3]

• Min service time θ2 on [0, 10]

• Service time range θ3 − θ2 on [0, 10]

• 1 million ABC simulations, best 200 accepted
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ABC distances

• Choice of distance function crucial

• Simplest setting: y is fixed-length vector

• Could take d as Euclidean distance

• Usually sensible to use weighted version

• i.e. normalise y components so on similar scales

• Many more sophisticated distances proposed:

• Application specific

• Based on theory (Wasserstein, MMD)

• Using machine learning (kernel methods, deep distance

learning)
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Summary statistics

• ABC typically poor with high dimensional data

• So lots of data dimensions must match

• V unlikely to get good matches in all!

• So ABC usually reduces data to low dim summary statistics

• Then computes distance e.g. Euclidean distance

• Theory: rate of convergence as ε→ 0 worsens quickly with
high dim(y)

• See e.g.“The rate of convergence for approximate Bayesian

computation” (Barber et al 2015)

• Dimension reduction using summary statistics helps
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Example - queueing model

• Same data (dimension 20) and simulations as before

• 5 summary statistics: min, lower quartile, median, upper

quartile, max (all normalised)
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Other ABC algorithms

• Always sampling θ from prior is inefficient

• Posterior ususally more concentrated than prior

• Lots of prior θs samples will be poor

• Simulating data from these wastes time!

• More efficient to propose promising θs based on previous

results

• Can use MCMC (Markov chain Monte Carlo)

• Or SMC (sequential Monte Carlo)
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Other ABC algorithms

• MCMC

• Propose next θ near to previous accepted one

• SMC

• Propose a group of θs close to previous accepted sample

• In ABC, SMC is more popular

• Can reduce ε adaptively during algorithm

• Several versions of ABC-SMC algorithm

• ε tuning harder for MCMC (but see Vihola and Franks 2019)
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More ABC contributions

• Lots more in the literature!

• Diagnostics

• Asymptotic theory

• ABC for model choice

• Choosing summary statistics

• Interpreting approximate results

• Lots of variants on ABC algorithms
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ABC software

• R

• abc

• easyABC

• python

• ABCPy

• PyAbc

• ELFI

• julia

• GpABC

• (not an exhaustive list!)

• Also, basic ABC v easy to code yourself
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ABC references

• Handbook of ABC

• Review papers

• “Approximate Bayesian Computation for infectious disease

modelling” - Minter and Retkute (2019)

• “Fundamentals and Recent Developments in Approximate

Bayesian Computation” - Lintusaari et al (2017)

• Wikipedia article (commissioned by PLOS comp bio - 2013)

• “Approximate Bayesian computational methods” - Marin et al

(2012)

• And many more
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Pros and cons

• Pros

• Basic idea very simple to understand

• Easy to implement

• Widely applicable

• Easy to get rough parameter estimates

• Cons

• Difficult tuning choices – distance / summary statistics

• Approximate results – hard to quantify error

• Doesn’t scale up well to expensive simulators

• Doesn’t scale up easily to high dimensional data
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Density estimation approaches



Density estimation for likelihood-free inference

• Lots of powerful density estimation methods developed in
recent decade(s)

• Mixture models

• Copulas

• Gaussian processes

• Invertible neural networks (aka normalising flows)

• Can be applied to likelihood-free inference

• Very broad idea:

1. Simulate parameters + data

2. Estimate some relevant density

3. Use to approximate posterior

• n.b. ABC uses nearest neighbours density estimation!

26



Conditional density estimation

• General idea:

• Simulate many (θ, y) pairs from prior and model

• Estimate joint density π̂(θ, y)

• Condition on yobs and output π̂(θ|yobs)
• Variation:

• Directly estimate π̂(θ|y)

• Output π̂(θ|yobs)
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Examples

• Mixture of Gaussians (Bonassi, You and West 2011)

• Random forest (Pudlo et al 2016)

• Extreme gradient boosted tree (Lamperti et al 2017)

• Mixture density neural networks (Papamakarios and Murray

2016, Lueckmann et al 2017)
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Likelihood estimation

• General idea:

• Simulate many (θ, y) pairs from prior and model

• Estimate data density p̂(y |θ)

• Likelihood estimate is L̂(θ) = p̂(yobs|θ)

• Examples

• Kernel density estimation (Diggle and Gratton 1984)

• Gaussian processes (Wilkinson 2014, Gutmann and Corander

2016)

• Normalising flows (Papamakarios, Sterrat and Murray 2018)
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Other related methods

• ABC regression correction (Beaumont et al 2002)

• Run ABC

• Fit regression to output (predict θ given y)

• Use to correct ABC sample

• Likelihood ratio estimation (Cranmer, Pavez and Louppe
2015)

• Fit a neural network to estimate likelihood ratio given θ1, θ2
• (Equivalent to a classification problem)

• Use in inference e.g. MCMC
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Review papers

• “Learning in implicit generative models” (Mohamed and

Lakshminarayanan, 2016)

• “A review of approximate Bayesian computation methods via

density estimation: Inference for simulator models” (Grazian

and Fan 2019)

• “The frontier of simulation-based inference” (Cranmer

Brehmer and Louppe 2019)
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Pros and cons

• Pros

• Scales up to bigger problems better than ABC

• Most methods don’t need ε (less tuning!)

• Reduces need for summary statistics

• Cons

• Less transparent than ABC

• Unclear what best method is!

• Often still needs some dimension reduction by summary

statistics

• Still hard to quantify approx error

• Little general purpose software yet
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Distilled importance sampling



Motivation

• ABC relies on simulator producing close matches to data

• Rare even under best parameter values!

• Density estimation methods must estimate densities for wide

range of ys

• Hard modelling task!

• We learn to control simulator to always output data close to

yobs
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Framework

• Parameters are θ

• Let u be all random draws used in simulator

• Then simulator is function y(θ, u)

• We try to learn density p(θ, u|yobs)
• (Tricky as often a near-singular density)
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Main idea

• Iteration 1

• Sample θ, u from prior distributions

• Weight sample depending closeness of y(θ, u) to yobs

Give moderate weights even to poor matches

• Use weighted sample to train density estimate

• Iteration 2

• Sample θ, u from density estimate

• Weight sample depending closeness of y(θ, u) to yobs

Require slightly close matches to get moderate weights

• Use weighted sample to train density estimate

• . . .
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Illustration

Sample from approximate density
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Illustration

Weight based on closeness
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Illustration

Apply density estimation
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Illustration

Sample from new approximate density
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Illustration

Weight based on closeness
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Comments

• Each iteration uses importance sampling

• Then uses output in density estimation

• “Distilled imporance sampling” (preprint on arxiv)

• Final results still approximate posterior

• Related to:

• Adaptive importance sampling

• Sequential importance sampling

• Cross-entropy method

• We use normalising flows for density estimation

• Algorithm reduces to stochastic gradient optimisation

• Similar to variational inference
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Queue example

• Need two u variables for individual in queue

• Seed for arrival time

• Seed for departure time

• Overall: 40 u variables and 3 θ variables
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MG1 queue results

• Inference time: 3 hours on desktop PC, final ε = 0.283
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Conclusion



Summary

• Generative models allow data simulation but not easy

likelihod calculation

• Likelihood-free inference does approximate inference just

using simulations

• ABC simulates data under many parameter values looking for

good matches

• Alternative: use simulations in modern density estimation

methods

• My recent work improves efficiency by learning to control

simulator
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